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We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA).
Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of
the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics
while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard
token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance
while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when
needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective
decoding that reduces the number of decoding operations by ~2.85x while maintaining similar performance
compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA’s embedding space naturally
supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture
modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA
surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable
performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2,

despite only having 1.6B parameters.

1 Introduction

One of the most important aspects of advanced machine
intelligence is the ability to understand the physical world
that surrounds us. This ability enables Al systems to learn,
reason, plan and act in the real world in order to assist
humans [LeCun, 2022]. Intelligent systems that need to
act in the real world includes wearable devices and robots
[Fung et al., 2025]. Machine learning tasks that make up for
this ability include captioning, retrieval, visual question
answering, action tracking, reasoning and planning etc
[Bordes et al., 2024, Chen et al., 2025b]. Systems for such
real-world applications must have real-time response with
low latency and inference cost.

Currently, the common approach to achieve these tasks
is to use large token-generative Vision Language Models
(VLMs) [Liu et al., 2023, Dai et al., 2023, Alayrac et al,,
2022, Chen et al., 2024b, Cho et al., 2025, Chen et al., 2022],
which takes visual input Xy, textual query Xg to generate
desired textual response Y autoregressively in token space,
ie., (Xv,Xq) +— Y. This is straightforward but inadequate
for two main reasons. First, VLMs are expensive to de-
velop, because they are trained to generate responses Y
to queries by capturing both task-relevant semantics with
task-irrelevant surface linguistic features such as words
choice, style or paraphrasing. During training, VLMs
must model both aspects, which results in unnecessary

S, — Predictor —> §,

5 E
() .,

Vv

Textual

X-Encoder Query Y-Encoder

Visual Textual
Input Target
Figure 1. VL-JEPA model architecture

computing effort spent producing diverse token sequences
that ultimately do not impact the correctness of the output.
Second, real-time tasks involving live streaming video (e.g.,
live action tracking) require sparse and selective decoding
(e.g.,, emitting a description only when a new event occurs)
[Zhou et al., 2024]. However, VLMs rely on autoregressive
token-by-token decoding, which must be completed be-
fore revealing the underlying semantics of Y. This process
introduces unnecessary latency and hampers the ability
to update semantics dynamically in real time.

This paper introduces the Joint Embedding Predictive
Architecture for Vision-Language (VL-JEPA), turning ex-
pensive learning of data-space token generation into more
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efficient latent-space semantic prediction. As illustrated in
Fig. 1, the model employs x-encoder to map vision inputs
Xy into embedding Sy, a y-encoder to map the textual
target Y into an embedding Sy, and a predictor that learns
the mapping (Sy, Xg) + Sy where X is a textual query
(i.e., the prompt). The training objective is defined in
the embedding space Lyi-jgpa = D(§y, Sy) instead of the
data space Ly = D(Y/, Y). During inference, a y-decoder
reads out the predicted embedding Sy to text space ¥
when needed.

Thanks to its non-generative nature, VL-JEPA is not
forced to reconstruct every surface detail of Y in the token
space. Instead, it only needs to predict the abstract repre-
sentation Sy in the embedding space. In the raw one-hot
token space, different plausible Y outputs for the same
input often appear nearly orthogonal if they don’t share
overlapping tokens. However, in the embedding space,
these diverse targets can be mapped to nearby points that
share similar semantics. This simplifies the target distri-
bution thus makes the learning process more efficient. In
addition, unlike VLMs, this approach eliminates the need
for learning language generation with a heavy decoder
during training, resulting in significant efficiency gains.

Thanks to its non-autoregressive nature, VL-JEPA can
produce continuous streams of target semantic embed-
dings within sliding windows with minimal latency as it
only require a single forward pass without autoregressive
decoding. This is particularly advantageous for real-time
online applications such as live action tracking, scene
recognition, or planning, where the embedding stream
can be selectively decoded by a lightweight y-decoder,
enabling efficient and prompt updates.

In this work, we empirically validate the advantages
of VL-JEPA. We conduct a strictly controlled comparison
against classical token-generative VLM [Liu et al., 2023,
Cho et al., 2025]: both setups use the same vision encoder,
spatial resolution, frame rate, training data, batch size,
and number of iterations, etc., with the only difference
being the objective in token space or embedding space.
Under this matched training condition, VL-JEPA delivers
consistently higher performance on zero-shot captioning
and classification while using roughly half the trainable
parameters, indicating that embedding-space supervision
improves learning efficiency.

Beyond the training phase, VL-JEPA also delivers sub-
stantial inference-time efficiency improvement through
selective decoding, where decoding happens only due to
significant change in the predicted embedding stream.
Empirically, this strategy reduces the number of decod-
ing operations by ~2.85x while preserving overall output
quality measured by average CIDEr scores.

Our final VL-JEPA models are trained in two stages: 1)
a pretraining stage using caption data to establish robust

vision-language alignment, and 2) a supervised finetuning
(SFT) stage that equips the model with VQA capabili-
ties. The model resulting from the first stage, denoted as
VL-JEPARgs, is evaluated on zero-shot classification and
text-to-video retrieval. VL-JEPAgssg outperforms CLIP
[Radford et al., 2021], SigLIP2 [Tschannen et al., 2025], and
Perception Encoder [Bolya et al., 2025] models in terms
of average classification accuracy (across 8 datasets) and
retrieval recall@1 (across 8 datasets). Following the second
stage, the resulting VL-JEPAsrr demonstrates significantly
improved classification performance due to its exposure
to in-domain training data. As a unified generalist model,
VL-JEPAgpr approaches the performance of specialist mod-
els optimized for individual benchmarks. Simultaneously,
VL-JEPAgpr exhibits effective VQA capabilities, achieving
performance on par with established VLM families, such
as InstructBLIP [Dai et al., 2023] and Qwen-VL [Bai et al.,
2023], across four datasets covering compositional visual
reasoning [Hudson and Manning, 2019], complex object
counting [Acharya et al., 2019], and object hallucination
[Li et al., 2023b, 2025b].

In summary, the contributions of this paper are as
follows:

* Weintroduce VL-JEPA, the first non-generative model
that can perform general-domain vision-language
tasks in real-time, built on a joint embedding predic-
tive architecture.

¢ We demonstrate in controlled experiments that VL-
JEPA, trained with latent space embedding predic-
tion, outperforms VLMs that rely on data space token
prediction.

¢ We show that VL-JEPA delivers significant efficiency
gains over VLMs for online video streaming appli-
cations, thanks to its non-autoregressive design and
native support for selective decoding.

* We highlight that our VL-JEPAspr model, with an
unified model architecture, can effectively handle a
wide range of classification, retrieval, and VQA tasks
at the same time.

2 Methodology

We propose VL-JEPA (Fig. 1), a model with the joint em-
bedding predictive architecture (JEPA) for vision-language
tasks. VL-JEPA is trained with triplets (Xv, Xg, Y), where
Xy denotes the visual input (a single image or a sequence
of video frames), Xg is a textual query (i.e., a question)
and Y is the textual target (i.c., the answer) to be predicted.
The VL-JEPA comprises of four components:
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Figure 2. Left: VL-JEPA Architecture. It learns to predict the target embedding Sy, instead of reconstructing the raw target Y in token space as in
classical VLMs. Right: VL-JEPA Applications: It handles vision-text-to-text generation tasks (e.g., captioning) with selective decoding mechanism
natively supported. Furthermore, VL-JEPA’s embedding space facilitates discriminative VQA, open-vocabulary classification and text-to-video

retrieval tasks using a single unified model architecture.

1. X-Encoder (Xy +— Sy) compresses high-volume
visual inputs to compact visual embeddings—a se-
quence of continuous vectors analogous to “visual
tokens” in classical VLMs.

2. Predictor ((Sy, Xpo) — Sy) is the core component
of VL-JEPA. It maps visual embeddings to a predic-
tion of target embedding, with a textual query as
conditioning.

3. Y-Encoder (Y — Sy) embeds the textual target into
a continuous latent space as the prediction target.
The target embedding is expected to abstract away
task irrelevant information.

4. Y-Decoder (Sy + Y) is not involved during the
main training phrase of VL-JEPA. At inference time,
it translates the predicted embedding as human-
readable text when necessary.

Fig. 2 illustrates how we instantiate the VL-JEPA ar-
chitecture in this paper. For the X-Encoder, we chose
V-JEPA 2 [Assran et al., 2025], a Vision Transformer that
outputs a sequence of visual tokens, which are then pro-
jected and fed into the Predictor initialized using Llama
3 Transformer layers. Query conditioning is achieved by
tokenizing and embedding the textual query and feeding
the resulting textual token embeddings into the Predictor
along with the visual embeddings. The outputs of the
Llama 3 Transformer layers are pooled and projected into
the target embedding space produced by the Y-Encoder,
which is initialized by EmbeddingGemma-300M [Vera
et al., 2025]. We provide more technical details in §?2.

Training Objective. JEPA models typically optimize
two objectives jointly: 1) prediction error in the embed-
ding space, and 2) additional regularization that avoids
representation collapse [Bardes et al., 2021, Balestriero
and LeCun, 2025]. Any loss that implements these two
properties can be applied to VL-JEPA. Alternatively, the

regularization term can be replaced by other anti-collapse
strategies, such as using an exponential moving average
(EMA) for the Y-Encoder [Assran et al., 2025] or freezing
the Y-Encoder [Zhou et al., 2025].

In this work, we adopt the InfoNCE loss [Radford
et al., 2021] due to its maturity in the vision-language
domain. More advanced non-sample-contrastive regular-
ization, such as VICReg [Bardes et al., 2021] and SIGReg
[Balestriero and LeCun, 2025] can also be applied but
we leave the exploration to future works. InfoNCE loss
can be mathematically divided [Wang and Isola, 2020]
into: 1) a representation alignment term that minimizes
the distance between normalized prediction and target
embeddings, and 2) a uniformity regularization term that
pushes embeddings in a batch apart from each other, thus
avoiding representation collapse. We train the Predictor
and the Y-Encoder jointly with bi-directional InfoNCE
loss, enabling them to mutually learn from each other.

Compared to the token-space loss used by generative
VLMs, calculating the training loss in the embedding
space is beneficial due to the simplified target distribu-
tion. Specifically, many real-world prediction tasks are
inherently ill-posed: for the same input X, there may exist
multiple plausible targets Y that are all acceptable. For
example, given the query “What will happen here if I flip
this light switch down?”, both “the lamp is turned off” and
“room will go dark” are valid answers. In the raw one-hot
token space, however, the two sequences are orthogonal
since they share no overlapping tokens. But when VL-
JEPA’s Y-Encoder embeds them into nearby points (ideally
yielding a compact unimodal distribution), the learning
task becomes much easier: the model no longer needs to
fit multiple disjoint high-density regions in sparse token
space, but only a single coherent mode in a continuous
embedding space.

Multi-tasking. VL-JEPA supports diverse tasks using a
single, unified architecture (Fig. 2). For vision-text-to-text
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generation tasks, such as captioning or open-ended VQA,
the query Xg is a captioning prompt or a question, and
the predictor learns to predict the embedding of the target
output, §y, which is then decoded into text. VL-JEPA
also supports CLIP-style open-vocabulary classification
and discriminative VQA, where candidate label texts are
encoded into embeddings and compared with prediction
Sy to select the nearest match. For text-to-video retrieval,
candidate videos are mapped to their predicted embed-
dings Sy using a retrieval a captioning prompt, and then
ranked by similarity to the encoded textual retrieval query.

Selective Decoding. Real-world video applications
often require online streaming inference, such as tracking
user actions in smart glasses for procedural assistance
[Chen et al., 2024c], monitoring world states for online
planning, navigation and robotics [Shukor et al., 2025,
Black et al., 2025, Song et al., 2025]. A central challenge
is balancing two competing needs: the model must con-
tinuously update semantics as new frames arrive, but
computational efficiency and latency are critical.

Existing VLMs typically rely on explicit memory mech-
anisms [Zhou et al., 2024, Qian et al., 2024] to decide when
to decode or complex KV-cache optimizations [Di et al.,
2025] for efficiency, since autoregressive language models
are expensive to run continuously. VL-JEPA, in contrast,
natively supports selective decoding. Since it predicts
a semantic answer embedding non-autoregressively, the
model provides a continuous semantic stream of Sy that
can be monitored in real time. This stream can be stabilized
with simple smoothing (e.g., average pooling) and decoded
only when a significant semantic shift is detected, such as
when the local window variance exceeds a threshold. In
this way, VL-JEPA maintains always-on semantic monitor-
ing while avoiding unnecessary decoding, achieving both
responsiveness and efficiency.

3 Implementation of VL-JEPA
3.1 Model Architecture

X-Encoder. Unless otherwise specified, we use a frozen
V-JEPA 2 ViT-L [Assran et al., 2025] with 304M param-
eters, a self-supervised vision model that excels at both
image and video tasks. Each video input is uniformly
sampled into frames at 256> resolution. For image inputs,
the same image is duplicated to match the input shape.
Predictor. The predictor is initialized with the last 8
Transformer layers of Llama-3.2-1B, resulting in 490M
trainable parameters. The text tokenizer and token em-
bedding are also from L1lama-3.2-1B. We allow maximum
512 query tokens, and put [PAD] tokens for short queries.
We disable the causal attention mask so that both vision
and query embeddings can be jointly attended. Linear
projections connect the predictor with the vision and text

embeddings, and average pooling on non-[PAD] tokens is
applied to obtain the predicted target embedding.

Y-Encoder. We use EmbeddingGemma-300M [Vera et al.,
2025] as the initialization of the Y-Encoder. We set max-
imum context length of 512 to handle detailed captions.
We found that setting a learning rate multiplier of x0.05 to
all text encoder parameters improves performance, since
the quality of embedding prediction would be suboptimal
in the beginning of training. Linear projection head is
applied to both Predictor and Y-Encoder, obtaining a
shared embedding space with 1,536 dimensions, where
the loss is calculated.

3.2 Two-stage Training

Large-scale Pretraining. VL-JEPA is trained with two
stages. The first query-free pretraining stage aims to es-
tablish robust vision-language alignment using massive
caption data. We use PLM-Image-Auto [Cho et al., 2025],
Datacomp [Gadre et al., 2023] and YFCC-100M [Thomee
et al., 2016] for image-text data. For video-text data, we
include PLM-Video-Auto [Cho et al., 2025], Ego4D atomic
action descriptions [Grauman et al., 2022], and an inter-
nal dataset Action100M consisting captions generated on
HowTo100M videos [Chen et al., 2025b].

We first do image-only training on Datacomp and YFCC-
100M with only 1 frame per visual input, which allows us
to use a large batch size of 24k. After 100k iterations, the
model has seen 2B samples and achieved 61.6% ImageNet
zero-shot accuracy (without prompt ensembling). Then,
we continue with joint image-video pretraining with 16
frames per input. The pretraining takes 2 weeks using
24 nodes with 8xNVIDIA H200 GPUs each. We adopt
a constant learning rate of 5x107° to facilitate extended
training. We call the resulting model VL-JEPAgsse and
measure zero-shot classification and retreival performance
with this model.

Supervised Finetuning. The second query-conditioned
supervised finetuning (SFT) stage empowers VL-JEPA
VQA capabilities while maintaining the pretrained vision-
language alignment for classification and retrieval. The
training data is selected from the PLM data mixture [Cho
etal., 2025], including 25M VQA samples, 2.8M captioning
samples, 1.8M classification samples, and downsampled
pretraining stage data to avoid catastrophic forgetting.

We train the model for 35k steps with a batch size of
6k (~2 days with 24 nodes), with cosine learning rate an-
nealing applied to improve convergence. Since excessive
human labelled data is included in this SFT data mixture,
we no longer emphasize zero-shot evaluation for the result-
ing VL-JEPAspr from this stage. Instead, we evaluate VQA
capabilities and compare it with state-of-the-art specialist
models.
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Table 1. Video classification and text-to-video retrieval. Best zero-shot performance in each dataset are highlighted. Samples seen = training step X

effective batch size.
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4 Experiments

4.1 Classification and Retrieval

We begin by evaluating VL-JEPA’s classification and re-
trieval performance in §4.1, and benchmark VL-JEPA on
VQA datasets in §4.2. We demonstrate application of VL-
JEPA for understanding the relationship between world
state changes and action concepts (i.e., inverse dynamics) in
§4.3. In §4.4, we demonstrate the advantage of embedding
prediction by comparing it with a token-predictive VLM
baseline under a strictly controlled setting. In §4.5, we
evaluate the effectiveness of VL-JEPA’s selective decoding,
and show that it reduces decoding cost while maintaining
the performance. Next, we analyze VL-JEPA’s Y-Encoder
in §4.6.

Evaluation Setup. We evaluate VL-JEPA following the
CLIP-style evaluation protocol (see Fig.2 and §2 “Multi-
tasking”). We assess VL-JEPA on a broad suite of bench-
marks, including 8 classification datasets and 8 retrieval
datasets. For zero-shot evaluation, we compare against
generalist foundation models CLIP [Radford et al., 2021],
SigLIP2 [Tschannen et al., 2025], and Perception Encoder
(PE-Core)[Bolya et al., 2025]. We additionally report refer-
ence numbers from specialist models that are individually op-
timized for each benchmark (summarized in Appendix??).

Results. Table 1 summarizes the results. In the strict
zero-shot setting, VL-JEPAg,sg achieves higher average ac-
curacy (46.4 vs 44.6) across the 8 classification datasets and
higher average recall@1 (58.4 vs 58.1) across the 8 retrieval
datasets than the best baseline PE-Core-G. Per-dataset
scores show that VL-JEPAg,sg is particularly strong on
motion-centric benchmarks (SS5v2, EK-100, EgoExo04D, and
step recognition on COIN and CrossTask), while relatively
weaker on appearance-centric benchmarks (Kinetics-400 and

task recognition on COIN and CrossTask). This is due to
VL-JEPAg,sk has seen substantially fewer vision-language
pairs (only 2B in comparison with PE-Core-G’s 86B). After
supervised finetuning, VL-JEPAgpr improves significantly
upon VL-JEPAg,se since the model has seen in-domain
training data. As a single generalist model, the performance
of VL-JEPAgr is approaching specialist models optimized
individually for each dataset.

4.2 Visual Question Answering

Evaluation Setup. We evaluate VL-JEPAgpr on discrimi-
native VQA tasks. The inference process involves encode
candidate answers using the Y-Encoder and selecting the
answer that minimizes the distance to the predicted em-
bedding (see Fig. 2). We select four benchmarks that
prioritize visual perception rather than knowledge and
reasoning. We evaluate on GQA [Hudson and Manning,
2019], a dataset for real-world visual reasoning and com-
positional QA, reporting accuracy on the testdev-balanced
split. For TallyQA [Acharya et al., 2019], which targets
complex counting, we follow Chen et al. [2022] and report
the weighted average accuracy across the “simple” and
“complex” splits. Finally, to assess object hallucination,
we utilize POPE [Li et al., 2023b] and POPEv2 [Li et al.,
2025b]. For POPE, we report the average accuracy across
the “random”, “popular”, and “adversarial” settings on
MS-COCO.

Results. Table 4.2 compares VL-JEPAgpr against estab-
lished VLM families, including BLIP-2 [Li et al., 2023a],
InstructBLIP [Dai et al., 2023], Qwen-VL [Bai et al., 2023],
InternVL [Chen et al., 2024d], Llava-1.5 [Vallaeys et al.,
2024], SmolVLM [Marafioti et al., 2025], PaLI [Chen et al.,
2022], PaliGemma [Beyer et al., 2024], and Video-LLaVA
[Lin et al., 2024]. VL-JEPAgpr outperforms many of these
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Table 2. VQA benchmarks. We report accuracy on GQA [Hudson and Manning, 2019], TallyQA [Acharya et al., 2019], POPE [Li et al., 2023b], and
POPEv2 [Li et al., 2025b]. Scores lower than our model are marked in red. Scores from SmolVLM are obtained by our evaluation, while other baselines

are reported in the literature.

GQA: compositional visual reasoning

TallyQA: complex object counting

POPE: object hallucination

POPEv2: object hallucination

Model Accuracy Model Accuracy Model Accuracy Model Accuracy
BLIP-2 (OPT-2.7B) 33.9 SmolVLM-256M 323 SmolVLM2-256M 56.4 SmolVLM-256M 62.3
BLIP-2 (FlanT5XXL) 41.0 SmolVLM-500M 44.8 SmolVLM-256M 57.9 LLaVA-1.5-13B 72.7
InstructBLIP (FlanT5XL) 484 PaLI-700M 62.3 LLaVA-7B 729 InternVL2-8B 74.5
InstructBLIP (Vicuna-13B) 49.5 SmolVLM-2B 64.7 InstructBLIP (Vicuna-13B) 79.0 InternVL2-26B 76.1
Qwen-VL-Chat-7B 57.5 PalI-3B 65.8 Video-LLaVA (7B) 83.4 Qwen2-VL-72B 79.4
Qwen-VL-7B 59.3 InstructBLIP (Vicuna-13B) 68.0 SmolVLM-500M 85.8 SmolVLM-500M 83.8
InternVL-Chat (Vicuna-7B) 59.5 PalI-17B 719 LLaVA-1.5-7B 85.9 Qwen2-VL-7B 87.0
LLaVA-1.5 (Vicuna-7B) 62.0 LLaVA-1.5 (Vicuna-13B) 72.3 LLaVA-1.5-13B-HD 86.3 SmolVLM-2B 88.8
InternVL-Chat (Vicuna-13B) 66.6 PaliGemma (3B) 76.8 SmolVLM-2B 87.5 Qwen2-VL-2B 91.3
VL-JEPAsFr (1.6B) 60.8 VL-JEPAr (1.6B) 67.4 VL-JEPAsr (1.6B) 84.2 VL-JEPAsFr (1.6B) 822

Table 3. WorLpPreDICTION-WM benchmark results. We compare the accuracy between large VLMs, socratic LLMs, and VL-JEPA. VL-JEPAgpr

achieves a new SoTA at 65.7%.

Vision Language Models Socratic LLMs (w/ Qwen2.5-VL-72B captions) VL-JEPA
InternVL2.5 Qwen2.5-VL Llama-3.1 Llama-4 Qwen2.5 GPT-40 C(Claude-3.5 Gemini-2 BASE SFT
2B 4B 26B 38B 3B 7B 32B 72B 8B 70B 109B 400B 3B 7B 72B N/A N/A N/A 1.6B 1.6B
20.0 29.8 302 50.3 21.6 455 49.0 57.0 487 498 527 53.6 440 491 485 520 53.3 55.6 639 657

baselines despite requiring significantly less computational
resources—classical VLMs rely on extensively pretrained
CLIP backbones combined with multi-stage visual instruc-
tion tuning. In comparison, VL-JEPAssr employs a unified
architecture and a single embedding space to seamlessly han-
dle VQA, classification, and retrieval (Tab. 1).

4.3 WorldPrediction-WM

Evaluation Setup. We evaluate VL-JEPA on the “world
modeling” task in the WorLDPRrEDICTION [Chen et al., 2025a]
benchmark, where the model is provided with two images
representing the initial and final world states and must
identify, among four candidate video clips, the action
that explains the observed transition. To adapt VL-JEPA,
we duplicate and concatenate the initial and final state
images to extract a state embedding, and encode each action
candidate into action embeddings. The model then selects
the candidate whose embedding is closest to the state
embedding.

Results. Table 3 shows accuracy comparisons. VL-
JEPAg,s attains 63.9% and VL-JEPAgpr attains 65.7% top-1
accuracy on WorLDPREDICTION-WM,, establishing a new
state of the art. Our VL-JEPA model not only substantially
surpasses existing VLMs of comparable or larger scale but
also exceeds the performance of frontier LLMs such as
GPT-40, Claude-3.5-sonnet, and Gemini-2.0.

4.4 Embedding Prediction vs. Token

Prediction: A Controlled Comparison

Evaluation Setup. In this section, we compare VL-JEPA to
a token-generative VLM baseline under a strictly aligned
training conditions. Both models use the same Perception

Encoder [Bolya et al., 2025] (frozen ViT-L-14 with 336°
resolution, no tiling, 16 frames per video) for vision inputs.
We use the same training iterations with the same effective
batch size of 128, same learning rate scheduler on the same
pretraining data mixture described above (§3). The only
difference is the prediction task: VL-JEPA predicts target
embeddings [Duquenne et al., 2023] using a 0.5B predictor,
whereas the VLM baseline performs next-token prediction
with cross-entropy using a 1B LLM. For VLM, we use the
standard training recipe and codebase of PerceptionLM
[Cho et al., 2025], aligning frozen vision encoder and text-
only LLM Llama-3.2-1B. For VL-JEPA, we initialize the
predictor from the 8-16 layers of Llama-3.2-1B.

We evaluate both models at regular checkpoints through-
out training spanning from 500K to 15M samples seen. At
each checkpoint, we measure the performance on video
captioning and video classification. For video captioning,
we report CIDEr scores averaged across YouCook?2 [Zhou
et al.,, 2018], MSR-VTT [Xu et al., 2016] and PVD-Bench
[Bolya et al., 2025]. VL-JEPA decodes the predicted embed-
dings while VLM generates the tokens directly. For video
classification, we report top-5 accuracy averaged across
CrossTask-Step, CrossTask-Task [Zhukov et al., 2019] and
EgoExo4D [Grauman et al., 2024]. For VL-JEPA we choose
the candidate with lowest cosine distance to the predicted
embedding, while for VLM we pick the class with lowest
perplexity.

Results. As shown in Fig. 3, both models yield compa-
rable performance after 500K samples seen in both tasks,
with respectively 1.23 and 1.35 CIDEr in video captioning
and 14.9% and 14.0% top-5 accuracy for VL-JEPA and
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Figure 3. Comparison of embedding prediction (VL-JEPA) and token prediction (VLM). We conduct a fair comparison of under strictly aligned
training settings (encoder, data, batchsize, etc.). Left: Zero-shot video captioning CIDEr score averaged over 3 datasets and zero-shot classification
accuracy (top-5) averaged over 3 benchmarks. Right: Comparing the trainable parameters and average inference time cost.
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Figure 4. Evaluation of selective decoding. Left: We compare uniform sampling of decoding points at fixed intervals (red) and embedding-guided
selective decoding (blue). Performance is measured by the average CIDEr score between each annotation y and its closest decoded output 7. Right:
Results on EgoExo4D show that selective decoding achieves a Pareto improvement over uniform sampling: for the same performance level, it requires

fewer decoding operations.

VLM. After a few iterations, we show that VL-JEPA’s per-
formance increase is much sharper compared to VLM,
reaching 14.7 CIDEr and 35.3% top-5 accuracy after 5M
samples seen. This gap remains constant as training scales
at 15M samples with 14.8 CIDEr and 41.0% top-5 accuracy
for VL-JEPA, while the VLM baseline yield respectively
7.1 CIDEr and 27.2% top-5 accuracy. This controlled com-
parison highlights the benefit of predicting embeddings
rather than tokens, showing both higher sample efficiency
and stronger absolute performance.

We compare the inference cost of the above VL-JEPA and
the VLM by pre-loading 64 video frames into memory and
repeatedly decoding text 100 times with the same prompt,
measuring the average time per sample. As shown in
Fig. 3 (right most), both models exhibit comparable latency
when generating text. What differentiates our model
from classical VLM is the decoupling between the prompt
processing (“Query Embedding”) and the video encoder
(“Encoder + Predictor”) from the text generation module
(“Decoder”). This allows us to only use the first part of
the model to perform retrieval and decode text only when
needed (see Section 4.5 below), making our model more
scalable for online video inference.

4.5 Effectiveness of Selective Decoding

Evaluation Setup. We evaluate the effectiveness of VL-
JEPA's embedding-guided selective decoding on long-form
video streams. To this end, we design a benchmark task

where the goal is to recover a temporal sequence of an-
notations while minimizing the number of text decoding
operations, which dominate inference cost. As shown in
Fig. 4 (left), decoding is performed only at selected points
along the VL-JEPA embedding stream, yielding a sequence
of N decoded outputs [(F1, ), (F, 72),..-, (Fn, 9n)]. Each
ground-truth annotation [(t1, y1), (f2, ¥2), ..., (tT, yr)] is
then aligned to its nearest decoded output in time (illus-
trated as o - - - o in Fig. 4), and CIDEr is computed between
matched pairs. We use the EgoExo4D [Grauman et al.,
2024] validation set in procedural activity domains, which
consists of 218 videos with an average duration of 6 min-
utes and about T = 143 atomic action annotations per
video.

As a baseline, we consider uniform sampling, where de-
coding points are placed at fixed intervals regardless of the
underlying video content. Standard streaming VLMs are
limited to this strategy, whereas VL-JEPA supports a more
effective alternative: adaptive selection of decoding points
guided by its predicted embeddings. We apply agglom-
erative clustering with temporal connectivity constraints
[Murtagh and Contreras, 2012] to partition the embedding
sequence into N segments of high intra-segment monose-
manticity [Chen et al., 2024a], measured by variance (i.e.,
Ward distance). The intuition is that within a semantically
coherent segment, decoded outputs are highly similar, so
decoding once per segment captures the essential infor-
mation while greatly reducing overall decoding cost. The
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Table 4. Comparison of text-encoders performance. We report triplet-based accuracy (%) on SugarCrepe++ and VISLA datasets.

SugarCrepe++ [Dumpala et al., 2024a] VISLA [Dumpeala et al., 2024b]
# Params. # Params.
Model (total) (text encoder) Replace  Replace Replace Swap Swap
Average | Attribute Object Relation Attribute Object | Average | Generic  Spatial

CLIP ViT-L 389M 85M 44.5 56.7 83.0 42.5 27.0 135 34.5 37.6 31.3
SigLIP2 ViT-g 1.9B 708M 56.5 66.9 74.4 52.1 58.4 30.6 404 48.7 321
PE-Core ViT-G 2.3B 537M 58.6 73.6 90.6 489 53.2 26.5 38.3 452 31.4
VL-JEPAgasg  ViT-L 1.6B 300M 63.9 722 90.1 52.2 62.9 42.0 42.9 49.8 35.9
VL-JEPAsgr  Vil-L 1.6B 300M 58.4 68.5 90.9 47.4 55.4 29.8 39.5 44.8 342

Table 5. Ablation studies results. The default setting adopted by VL-JEPA is marked in blue . We calculate +delta within each group of ablations

in comparison with the default setting.

Classification  Retrieval VQA Classification = Retrieval VQA
(Accuracy) (Recall@1) (Accuracy) (Accuracy) (Recall@1)  (Accuracy)
VL-JEPAsrr  59.1 70.6 53.2 (d) Predictor architecture and initialization
(1) Effoctivencss of pretrainine staee o cantion d Layer 8-16 27.3 30.2 42.5
a) Effective ness of pretraining stage on caption data Layer 0-2 243 (30 278 (24 401 (29
w/ Pretraining  49.0 475 46.1
/0 Pretraini 273 302 25 Layer 0-4 251 (22 28.9 (13 43.6  (+1.1)
w/o Tretraining 275 (217 S B ) Layer 0-8 272 (o1 293 (09 434 (09
(b) Learning rate multiplier for Y-Encoder Layer 0-16 274 (0.) 310 wos) 455 @30
multiplier = 0.05 27.3 30.2 425 w/o Bi-direction Attention 26.7 (-0.6) 312 10 406 (19
multiplier =1.00 23.7 (36 288 (14 407 (18 w/o Llama-3 Initialization 28.1 (+0.8) 304 02 40.6 (19
multz‘plzler =010 269 oy 02 o 429 w0y (e) Y-Encoder (trainable linear projection on top of frozen text encoder)
multiplier =0.01 256 (17 27.7 (25 41.0 (15 . / i
multiplier =0.00 20.0 (73 259 (43 414 (1) EmbeddingGemma-300M  19.5 241 42.5
Qwen3-Embedding-0.6B  24.5 (+5.0) 245 (04 415 (10
(c) Loss function (with no projection head on top frozen text encoder) Qwen3-Embedding-4B  27.7 (182 26.6 (25 381 (49
InfoNCE 23.3 30.3 443 Qwen3-Embedding-8B  29.6  (+10.1) 295 (54 419 (06
Cosine  16.5 (-6.8) 20.2  (101) 46.6 (+23) PEcore-B (356M) 294 (49.9) 345 (+104) 359 (66)
L1 148 (85 155 (148 419 (24 PEcore-L (356M)  29.0  (+95) 34.2  (+101) 429 (+04)
L2 135 (93 11.7  186) 43.7  (-06) PEcore-G (539M) 339  (+144) 320 @79 41.8 (o)

midpoint of each segment is then chosen as the decoding
point, and decoding is performed either from the exact
embedding or from the average-pooled embedding within
the segment.

Results. As shown in Fig. 4 (right), we sweep the av-
erage decoding frequency from 2.0 Hz down to 0.01 Hz
(i.e., average intervals between consecutive decoding op-
erations from 0.5s to 100s) by adjusting either the stride
of uniform sampling or the number of clusters in adap-
tive selection. Across the entire range, adaptive selection
consistently Pareto-dominates uniform sampling. In par-
ticular, selective decoding at 0.35 Hz (i.e., ~2.85s interval)
matches the performance of uniform decoding at 1 Hz,
reducing decoding cost by ~2.85x. We further observe
that average pooling provides consistent gains for both
strategies, since it provides denoising and stabilization on
embeddings prior feeding into the decoder.

4.6 Evaluation of Y-Encoder

Evaluation Setup. We evaluate whether the JEPA architec-
ture improves the Y-Encoder by following the uni-modal
text-only (TOT) evaluation setup. We use the hard-negative
benchmarks SugarCrepe++ [Dumpala et al., 2024a] and
VISLA [Dumpala et al., 2024b]. These datasets test sensitiv-

ity to semantic and lexical changes in image descriptions.
Each dataset contains triplets: two semantically similar de-
scriptions of the same image (p1 and p2), and one negative
description (1) created by altering attributes, relations, or
objects. We compare Y-Encoders from different models
by computing the cosine similarity for all description pairs.
We check that the similarity between positives sim(p1, p2)
is higher than both the similarity between each positive
and the negative sim(p1,n) and sim(p2,n). We report
accuracy (%) across all samples.

Results. Table 4 shows the performance of different
models on text hard-negative benchmarks. VL-JEPAgssg
achieves a micro average accuracy of 63.9% on Sugar-
Crepe++ and 42.9% on VISLA. This is higher than the best
other models: PE-Core scores 58.6% on SugarCrepe++ and
SigLIP2 scores 40.4% on VISLA. The finetuned VL-JEPAggr
model also achieves competitive results, with 58.4% on
SugarCrepe++ and 39.5% on VISLA. These results indicate
that VL-JEPAgasg has a Y-Encoder that is more resilient to
text hard-negatives.

4.7 Ablation Study

Evaluation Setup. We study different design choices for
VL-JEPA. Here we train all ablation models on the SFT stage
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data for 10K steps with a batch size of 512 (5SM samples seen)
and constant learning rate. We report average classification
top-1 accuracy of 8 datasets (Tab. 1), average text-to-video
retrieval recall@1 of 8 datasets (Tab. 1), and average VQA
accuracy of 4 datasets (CLEVR, GQA, TallyQA simple and
complex). We report the results in Tab. 5.

Results. (a) Pretraining. Dropping the first query-free
pretraining stage on image and video captions significantly
hurt performance, especially on classification (-21.7) and
retrieval (-17.3). (b) LR Multiplier. The sweet point of
learning rate multiplier to the Y-Encoder is around 0.05
to 0.10. Either faster or slower learning degrades the
performance. (c) Loss Function. InfoNCE generally give
superior performance compared to cosine, L1, and L2
losses, with the only exception being cosine loss outper-
form InfoNCE on VQA. However, only InfoNCE has the
anti-collapse regularization and can be applied with un-
frozen Y-Encoder. (d) Predictor. In terms of predictor size,
more layers yield better performance, especially on VQA
performance. We also see that if using the original causal
attention instead of updating to bi-direction attention hurt
VQA performance (-1.9), since query tokens are appended
after visual tokens, and visual tokens are no longer able to
attend to query tokens. Finally, we also see that LLama-3
initialization is beneficial to VQA performance, although
vision-language alignment (classification and retrieval) is
a bit worse compared to randomly initialized Transformer
layers. (e) Y-Encoder. We tried different text encoder as the
Y-Encoder, and confirmed that VL-JEPA works well with
other embedding models than EmbeddingGemma-300M.
Generally, larger encoder leads to better performance, with
visually aligned text encoders (PE models) has significant
advantage in classification and retrieval.

5 Related Works

JEPA Models. JEPA model learns by predicting the rep-
resentation of a target input Y from the representation of
a context input X. Early instantiations include I-JEPA for
image encoding [Assran et al., 2023] and V-JEPA for video
encoding [Bardes et al., 2023], which demonstrated the
effectiveness of this objective over pixel reconstruction ap-
proach in their respective modality. Recent JEPA work falls
into two categories. One category of work emphasizes bet-
ter unimodal representation learning [Assran et al., 2023,
Bardes et al., 2023, Fei et al., 2023] or cross-modal align-
ment [Lei et al., 2025, Jose et al., 2025]. The other direction
targets world modeling, where pretrained encoders are
frozen and action-conditioned predictors are trained for
conditional prediction of state representations [Zhou et al.,
2025, Baldassarre et al., 2025, Assran et al., 2025]. This
has shown good results but remains limited to narrow
domains like mazes or robotic pick-and-place. Our pro-
posed VL-JEPA is the first designed for general-purpose

vision-language tasks. It performs conditional latent pre-
diction over vision and text, and preserves efficiency while
enabling flexible, multitask architecture.

Vision Language Models. Existing vision-language
models largely fall into two families: (1) CLIP-style models
with a non-predictive joint-embedding architecture (JEA)
[Radford et al., 2021, Zhai et al., 2023, Bolya et al., 2025,
Liu et al., 2024, Chen et al., 2023] encode images and
texts independently into a common latent space, Xy — Sy
and Y — Sy. By minimizing Lcp = D(Sy, Sy) with
a contrastive loss (e.g., InfoNCE), CLIP learns aligned
representations that support zero-shot classification and
vision-language retrieval; (2) Generative VLMs [Liu et al.,
2023, Chen et al., 2022, Dai et al., 2023, Alayrac et al., 2022,
Chen et al., 2024b, Cho et al., 2025, Beyer et al., 2024]
connect a vision encoder [Radford et al., 2021, Fini et al.,
2025] with a language model (e.g., LLM). They are typically
trained with Lyy = D(f/, Y), i.e., next token prediction
with cross-entropy loss, and can learn to handle various
vision-text-to-text generation tasks such as VQA.

Table 6. Task coverage comparison.

CLIP VLM VL-JEPA

Generation X v v
Retrieval v X v

Our proposed VL-JEPA integrates the architectural ad-
vantages and task coverage of both CLIPs and VLMs
(Table 6). Since VL-JEPA learns in embedding space, it
can leverage web-scale noisy image—text pairs [Jia et al.,
2021], yielding strong open-domain features. On the other
hand, VL-JEPA supports conditional generation tasks with
a readout text decoder. Meanwhile, compared to genera-
tive VLMs that optimize directly in data space, VL-JEPA is
more efficient at learning in the latent space. In addition,
it is also more efficient for online inference, as it allows
naturally selective decoding.

Efficient Vision Language Models. The growing size
and training cost of VLMs has motivated efforts to improve
efficiency. On the training side, strong performance can
be achieved by updating only a subset of parameters,
such as the vision-language connector [Tsimpoukelli et al.,
2021, Alayrac et al., 2022, Vallaeys et al., 2024, Shukor
et al., 2023, Koh et al., 2023, Merullo et al., 2022, Dai
et al.,, 2023]. At inference, efficiency is pursued through
pruning parameters or visual tokens [Cao et al., 2023,
Shukor and Cord, 2024, Vasu et al., 2025]. For real-time
use cases, recent work explores small VLMs [Yao et al.,
2024, Marafioti et al., 2025] and heuristics to reduce query
frequency in asynchronous inference [Shukor et al., 2025].

Latent-space Language Modeling. Current state-of-
the-art LLMs are trained to decode and reason in text space
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using autoregressive generation and chain-of-thought
prompting [Wei et al., 2022]. Text-space LLMs have rapidly
improved and now achieve strong results on a wide range
of benchmarks. However, the discrete nature of their rea-
soning trace may limit both speed and performance in
the long term. Several works have explored latent-space
LLMs that process or reason in latent space, such as Large
Concept Models [Barrault et al., 2024] and COCONUT
[Hao et al., 2024]. These models focus on unimodal latent-
space reasoning. With VL-JEPA, our goal is to align vision
and text representations in a shared multi-modal latent
space. This approach aims to enable better abstractions
and improve both the performance and speed of vision-
language models (VLMs). We hope VL-JEPA will serve as
a foundation for future work on multi-modal latent space
reasoning, including visual chain-of-thought methods [Li
et al., 2025a].

6 Conclusion

We have presented VL-JEPA, a new vision-language model
built upon the joint embedding predictive architecture.
By shifting supervision from discrete token space to con-
tinuous semantic embedding space, VL-JEPA simplifies
the learning target, avoids redundant modeling of sur-
face linguistic variability, and enables non-autoregressive
prediction. Through controlled experiments, we show
that VL-JEPA outperforms generative VLMs trained with
cross-entropy loss under matched training data budget,
while achieving superior training efficiency and signifi-
cantly lower inference latency. Beyond generation tasks,
the embedding-based design further allows VL-JEPA to
handle open-vocabulary classification and cross-modal
retrieval within a single unified architecture. Its ability
to emit continuous semantic embeddings also makes it
particularly well suited for real-time video applications,
where selective decoding can improve both responsive-
ness and efficiency. In this work, we demonstrated the
advantages of VL-JEPA over standard VLMs, particularly
in computational efficiency, streaming applications, and
video-language tasks. Our goal at this stage, is not to
propose a universal alternative to VLMs, as this would
require broader evaluation on tasks such as reasoning, tool
use, and agentic behaviors where current token generative
VLMs excel. Finally, although our results show clear bene-
fits from scaling parameters and dataset size, we did not
fully explore this direction, leaving it for future work.
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