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We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA).

Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of

the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics

while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard

token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance

while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when

needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective
decoding that reduces the number of decoding operations by ∼2.85× while maintaining similar performance

compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA’s embedding space naturally

supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture
modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA

surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable

performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2,

despite only having 1.6B parameters.

1 Introduction
One of the most important aspects of advanced machine

intelligence is the ability to understand the physical world

that surrounds us. This ability enables AI systems to learn,

reason, plan and act in the real world in order to assist

humans [LeCun, 2022]. Intelligent systems that need to

act in the real world includes wearable devices and robots

[Fung et al., 2025]. Machine learning tasks that make up for

this ability include captioning, retrieval, visual question

answering, action tracking, reasoning and planning etc

[Bordes et al., 2024, Chen et al., 2025b]. Systems for such

real-world applications must have real-time response with

low latency and inference cost.

Currently, the common approach to achieve these tasks

is to use large token-generative Vision Language Models

(VLMs) [Liu et al., 2023, Dai et al., 2023, Alayrac et al.,

2022, Chen et al., 2024b, Cho et al., 2025, Chen et al., 2022],

which takes visual input 𝑋𝑉 , textual query 𝑋𝑄 to generate

desired textual response𝑌 autoregressively in token space,

i.e., (𝑋𝑉 , 𝑋𝑄) ↦→ 𝑌. This is straightforward but inadequate

for two main reasons. First, VLMs are expensive to de-

velop, because they are trained to generate responses 𝑌

to queries by capturing both task-relevant semantics with

task-irrelevant surface linguistic features such as words

choice, style or paraphrasing. During training, VLMs

must model both aspects, which results in unnecessary
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Figure 1. VL-JEPA model architecture

computing effort spent producing diverse token sequences

that ultimately do not impact the correctness of the output.

Second, real-time tasks involving live streaming video (e.g.,
live action tracking) require sparse and selective decoding

(e.g.,, emitting a description only when a new event occurs)

[Zhou et al., 2024]. However, VLMs rely on autoregressive

token-by-token decoding, which must be completed be-

fore revealing the underlying semantics of 𝑌. This process

introduces unnecessary latency and hampers the ability

to update semantics dynamically in real time.

This paper introduces the Joint Embedding Predictive

Architecture for Vision-Language (VL-JEPA), turning ex-

pensive learning of data-space token generation into more
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efficient latent-space semantic prediction. As illustrated in

Fig. 1, the model employs x-encoder to map vision inputs

𝑋𝑉 into embedding 𝑆𝑉 , a y-encoder to map the textual

target 𝑌 into an embedding 𝑆𝑌 , and a predictor that learns

the mapping (𝑆𝑉 , 𝑋𝑄) ↦→ 𝑆𝑌 where 𝑋𝑄 is a textual query

(i.e., the prompt). The training objective is defined in

the embedding space ℒVL-JEPA = 𝐷(𝑆̂𝑌 , 𝑆𝑌) instead of the

data space ℒVLM = 𝐷(𝑌̂, 𝑌). During inference, a y-decoder

reads out the predicted embedding 𝑆̂𝑌 to text space 𝑌̂

when needed.

Thanks to its non-generative nature, VL-JEPA is not

forced to reconstruct every surface detail of 𝑌 in the token

space. Instead, it only needs to predict the abstract repre-

sentation 𝑆𝑌 in the embedding space. In the raw one-hot

token space, different plausible 𝑌 outputs for the same

input often appear nearly orthogonal if they don’t share

overlapping tokens. However, in the embedding space,

these diverse targets can be mapped to nearby points that

share similar semantics. This simplifies the target distri-

bution thus makes the learning process more efficient. In

addition, unlike VLMs, this approach eliminates the need

for learning language generation with a heavy decoder

during training, resulting in significant efficiency gains.

Thanks to its non-autoregressive nature, VL-JEPA can

produce continuous streams of target semantic embed-

dings within sliding windows with minimal latency as it

only require a single forward pass without autoregressive

decoding. This is particularly advantageous for real-time

online applications such as live action tracking, scene

recognition, or planning, where the embedding stream

can be selectively decoded by a lightweight y-decoder,

enabling efficient and prompt updates.

In this work, we empirically validate the advantages

of VL-JEPA. We conduct a strictly controlled comparison

against classical token-generative VLM [Liu et al., 2023,

Cho et al., 2025]: both setups use the same vision encoder,

spatial resolution, frame rate, training data, batch size,

and number of iterations, etc., with the only difference

being the objective in token space or embedding space.

Under this matched training condition, VL-JEPA delivers

consistently higher performance on zero-shot captioning

and classification while using roughly half the trainable

parameters, indicating that embedding-space supervision

improves learning efficiency.

Beyond the training phase, VL-JEPA also delivers sub-

stantial inference-time efficiency improvement through

selective decoding, where decoding happens only due to

significant change in the predicted embedding stream.

Empirically, this strategy reduces the number of decod-

ing operations by ∼2.85× while preserving overall output

quality measured by average CIDEr scores.

Our final VL-JEPA models are trained in two stages: 1)

a pretraining stage using caption data to establish robust

vision-language alignment, and 2) a supervised finetuning

(SFT) stage that equips the model with VQA capabili-

ties. The model resulting from the first stage, denoted as

VL-JEPABASE, is evaluated on zero-shot classification and

text-to-video retrieval. VL-JEPABASE outperforms CLIP

[Radford et al., 2021], SigLIP2 [Tschannen et al., 2025], and

Perception Encoder [Bolya et al., 2025] models in terms

of average classification accuracy (across 8 datasets) and

retrieval recall@1 (across 8 datasets). Following the second

stage, the resulting VL-JEPASFT demonstrates significantly

improved classification performance due to its exposure

to in-domain training data. As a unified generalist model,

VL-JEPASFT approaches the performance of specialist mod-

els optimized for individual benchmarks. Simultaneously,

VL-JEPASFT exhibits effective VQA capabilities, achieving

performance on par with established VLM families, such

as InstructBLIP [Dai et al., 2023] and Qwen-VL [Bai et al.,

2023], across four datasets covering compositional visual

reasoning [Hudson and Manning, 2019], complex object

counting [Acharya et al., 2019], and object hallucination

[Li et al., 2023b, 2025b].

In summary, the contributions of this paper are as

follows:

• We introduce VL-JEPA, the first non-generative model

that can perform general-domain vision-language

tasks in real-time, built on a joint embedding predic-

tive architecture.

• We demonstrate in controlled experiments that VL-

JEPA, trained with latent space embedding predic-

tion, outperforms VLMs that rely on data space token

prediction.

• We show that VL-JEPA delivers significant efficiency

gains over VLMs for online video streaming appli-

cations, thanks to its non-autoregressive design and

native support for selective decoding.

• We highlight that our VL-JEPASFT model, with an

unified model architecture, can effectively handle a

wide range of classification, retrieval, and VQA tasks

at the same time.

2 Methodology
We propose VL-JEPA (Fig. 1), a model with the joint em-

bedding predictive architecture (JEPA) for vision-language

tasks. VL-JEPA is trained with triplets ⟨𝑋𝑉 , 𝑋𝑄 , 𝑌⟩, where

𝑋𝑉 denotes the visual input (a single image or a sequence

of video frames), 𝑋𝑄 is a textual query (i.e., a question)

and 𝑌 is the textual target (i.e., the answer) to be predicted.

The VL-JEPA comprises of four components:

2



VL-JEPA: Joint Embedding Predictive Architecture for Vision-language

Sec 1: Intro | Sec 2: Method | Sec 3: Implementation | Sec 4: Experiments | Sec 5: Related Works | Sec 6: Conclusion

Figure 2. Left: VL-JEPA Architecture. It learns to predict the target embedding 𝑆𝑌 , instead of reconstructing the raw target 𝑌 in token space as in

classical VLMs. Right: VL-JEPA Applications: It handles vision-text-to-text generation tasks (e.g., captioning) with selective decoding mechanism

natively supported. Furthermore, VL-JEPA’s embedding space facilitates discriminative VQA, open-vocabulary classification and text-to-video

retrieval tasks using a single unified model architecture.

1. X-Encoder (𝑋𝑉 ↦→ 𝑆𝑉 ) compresses high-volume

visual inputs to compact visual embeddings–a se-

quence of continuous vectors analogous to “visual

tokens” in classical VLMs.

2. Predictor (⟨𝑆𝑉 , 𝑋𝑄⟩ ↦→ 𝑆̂𝑌) is the core component

of VL-JEPA. It maps visual embeddings to a predic-

tion of target embedding, with a textual query as

conditioning.

3. Y-Encoder (𝑌 ↦→ 𝑆𝑌) embeds the textual target into

a continuous latent space as the prediction target.

The target embedding is expected to abstract away

task irrelevant information.

4. Y-Decoder (𝑆̂𝑌 ↦→ 𝑌̂) is not involved during the

main training phrase of VL-JEPA. At inference time,

it translates the predicted embedding as human-

readable text when necessary.

Fig. 2 illustrates how we instantiate the VL-JEPA ar-

chitecture in this paper. For the X-Encoder, we chose

V-JEPA 2 [Assran et al., 2025], a Vision Transformer that

outputs a sequence of visual tokens, which are then pro-

jected and fed into the Predictor initialized using Llama

3 Transformer layers. Query conditioning is achieved by

tokenizing and embedding the textual query and feeding

the resulting textual token embeddings into the Predictor

along with the visual embeddings. The outputs of the

Llama 3 Transformer layers are pooled and projected into

the target embedding space produced by the Y-Encoder,

which is initialized by EmbeddingGemma-300M [Vera

et al., 2025]. We provide more technical details in §??.

Training Objective. JEPA models typically optimize

two objectives jointly: 1) prediction error in the embed-

ding space, and 2) additional regularization that avoids

representation collapse [Bardes et al., 2021, Balestriero

and LeCun, 2025]. Any loss that implements these two

properties can be applied to VL-JEPA. Alternatively, the

regularization term can be replaced by other anti-collapse

strategies, such as using an exponential moving average

(EMA) for the Y-Encoder [Assran et al., 2025] or freezing

the Y-Encoder [Zhou et al., 2025].

In this work, we adopt the InfoNCE loss [Radford

et al., 2021] due to its maturity in the vision-language

domain. More advanced non-sample-contrastive regular-

ization, such as VICReg [Bardes et al., 2021] and SIGReg

[Balestriero and LeCun, 2025] can also be applied but

we leave the exploration to future works. InfoNCE loss

can be mathematically divided [Wang and Isola, 2020]

into: 1) a representation alignment term that minimizes

the distance between normalized prediction and target

embeddings, and 2) a uniformity regularization term that

pushes embeddings in a batch apart from each other, thus

avoiding representation collapse. We train the Predictor

and the Y-Encoder jointly with bi-directional InfoNCE

loss, enabling them to mutually learn from each other.

Compared to the token-space loss used by generative

VLMs, calculating the training loss in the embedding

space is beneficial due to the simplified target distribu-

tion. Specifically, many real-world prediction tasks are

inherently ill-posed: for the same input 𝑋, there may exist

multiple plausible targets 𝑌 that are all acceptable. For

example, given the query “What will happen here if I flip
this light switch down?”, both “the lamp is turned off” and

“room will go dark” are valid answers. In the raw one-hot

token space, however, the two sequences are orthogonal

since they share no overlapping tokens. But when VL-

JEPA’s Y-Encoder embeds them into nearby points (ideally

yielding a compact unimodal distribution), the learning

task becomes much easier: the model no longer needs to

fit multiple disjoint high-density regions in sparse token

space, but only a single coherent mode in a continuous

embedding space.

Multi-tasking. VL-JEPA supports diverse tasks using a

single, unified architecture (Fig. 2). For vision-text-to-text
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generation tasks, such as captioning or open-ended VQA,

the query 𝑋𝑄 is a captioning prompt or a question, and

the predictor learns to predict the embedding of the target

output, 𝑆̂𝑌 , which is then decoded into text. VL-JEPA

also supports CLIP-style open-vocabulary classification

and discriminative VQA, where candidate label texts are

encoded into embeddings and compared with prediction

𝑆̂𝑌 to select the nearest match. For text-to-video retrieval,

candidate videos are mapped to their predicted embed-

dings 𝑆̂𝑌 using a retrieval a captioning prompt, and then

ranked by similarity to the encoded textual retrieval query.

Selective Decoding. Real-world video applications

often require online streaming inference, such as tracking

user actions in smart glasses for procedural assistance

[Chen et al., 2024c], monitoring world states for online

planning, navigation and robotics [Shukor et al., 2025,

Black et al., 2025, Song et al., 2025]. A central challenge

is balancing two competing needs: the model must con-

tinuously update semantics as new frames arrive, but

computational efficiency and latency are critical.

Existing VLMs typically rely on explicit memory mech-

anisms [Zhou et al., 2024, Qian et al., 2024] to decide when

to decode or complex KV-cache optimizations [Di et al.,

2025] for efficiency, since autoregressive language models

are expensive to run continuously. VL-JEPA, in contrast,

natively supports selective decoding. Since it predicts

a semantic answer embedding non-autoregressively, the

model provides a continuous semantic stream of 𝑆̂𝑌 that

can be monitored in real time. This stream can be stabilized

with simple smoothing (e.g., average pooling) and decoded

only when a significant semantic shift is detected, such as

when the local window variance exceeds a threshold. In

this way, VL-JEPA maintains always-on semantic monitor-

ing while avoiding unnecessary decoding, achieving both

responsiveness and efficiency.

3 Implementation of VL-JEPA
3.1 Model Architecture
X-Encoder. Unless otherwise specified, we use a frozen

V-JEPA 2 ViT-L [Assran et al., 2025] with 304M param-

eters, a self-supervised vision model that excels at both

image and video tasks. Each video input is uniformly

sampled into frames at 256
2

resolution. For image inputs,

the same image is duplicated to match the input shape.

Predictor. The predictor is initialized with the last 8

Transformer layers of Llama-3.2-1B, resulting in 490M

trainable parameters. The text tokenizer and token em-

bedding are also from Llama-3.2-1B. We allow maximum

512 query tokens, and put [PAD] tokens for short queries.

We disable the causal attention mask so that both vision

and query embeddings can be jointly attended. Linear

projections connect the predictor with the vision and text

embeddings, and average pooling on non-[PAD] tokens is

applied to obtain the predicted target embedding.

Y-Encoder. We use EmbeddingGemma-300M [Vera et al.,

2025] as the initialization of the Y-Encoder. We set max-

imum context length of 512 to handle detailed captions.

We found that setting a learning rate multiplier of ×0.05 to

all text encoder parameters improves performance, since

the quality of embedding prediction would be suboptimal

in the beginning of training. Linear projection head is

applied to both Predictor and Y-Encoder, obtaining a

shared embedding space with 1,536 dimensions, where

the loss is calculated.

3.2 Two-stage Training
Large-scale Pretraining. VL-JEPA is trained with two

stages. The first query-free pretraining stage aims to es-

tablish robust vision-language alignment using massive

caption data. We use PLM-Image-Auto [Cho et al., 2025],

Datacomp [Gadre et al., 2023] and YFCC-100M [Thomee

et al., 2016] for image-text data. For video-text data, we

include PLM-Video-Auto [Cho et al., 2025], Ego4D atomic

action descriptions [Grauman et al., 2022], and an inter-

nal dataset Action100M consisting captions generated on

HowTo100M videos [Chen et al., 2025b].

We first do image-only training on Datacomp and YFCC-

100M with only 1 frame per visual input, which allows us

to use a large batch size of 24k. After 100k iterations, the

model has seen 2B samples and achieved 61.6% ImageNet

zero-shot accuracy (without prompt ensembling). Then,

we continue with joint image-video pretraining with 16

frames per input. The pretraining takes 2 weeks using

24 nodes with 8×NVIDIA H200 GPUs each. We adopt

a constant learning rate of 5×10
−5

to facilitate extended

training. We call the resulting model VL-JEPABASE and

measure zero-shot classification and retreival performance

with this model.

Supervised Finetuning. The second query-conditioned

supervised finetuning (SFT) stage empowers VL-JEPA

VQA capabilities while maintaining the pretrained vision-

language alignment for classification and retrieval. The

training data is selected from the PLM data mixture [Cho

et al., 2025], including 25M VQA samples, 2.8M captioning

samples, 1.8M classification samples, and downsampled

pretraining stage data to avoid catastrophic forgetting.

We train the model for 35k steps with a batch size of

6k (∼2 days with 24 nodes), with cosine learning rate an-

nealing applied to improve convergence. Since excessive

human labelled data is included in this SFT data mixture,

we no longer emphasize zero-shot evaluation for the result-

ing VL-JEPASFT from this stage. Instead, we evaluate VQA

capabilities and compare it with state-of-the-art specialist
models.
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Table 1. Video classification and text-to-video retrieval. Best zero-shot performance in each dataset are highlighted. Samples seen = training step ×
effective batch size.

Video Classification (Top-1 Accuracy) Text-to-video Retrieval (Recall@1)
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RN50 75M 12.8B 21.8 2.1 1.5 1.9 41.4 8.6 39.0 10.9 68.7 28.3 28.7 17.7 24.7 29.7 5.1 27.6 47.2 46.0

ViT-B 124M 12.8B 25.3 3.1 1.3 2.4 49.5 11.2 47.3 16.2 71.5 29.3 31.0 19.5 25.7 34.0 6.1 27.0 48.5 42.9CLIP

ViT-L 389M 12.8B

✓ ✓
30.9 3.8 3.7 3.6 58.3 14.7 63.5 20.8 78.5 35.3 35.9 23.4 30.7 41.9 7.9 36.7 56.8 49.3

ViT-B 375M 40B 33.9 5.2 2.3 4.9 57.8 20.6 69.9 27.7 82.9 39.6 40.2 25.0 32.1 48.6 13.8 52.1 60.9 43.7

ViT-L 882M 40B 38.7 5.9 4.5 7.0 63.6 24.2 78.5 35.1 90.8 45.4 41.6 32.7 35.1 53.5 19.0 59.2 71.6 50.9SigLIP2

ViT-g 1.9B 40B

✓ ✓
39.9 6.1 6.1 6.4 68.0 26.0 80.4 35.1 90.8 47.5 43.4 33.9 38.9 56.0 22.2 60.4 73.0 52.5

ViT-B 448M 58B 37.3 5.8 3.3 6.3 65.4 21.5 77.1 26.9 91.8 44.9 46.5 35.4 35.3 49.1 15.2 59.8 68.7 49.2

ViT-L 671M 58B 42.8 9.3 6.0 10.9 73.4 27.1 83.3 37.5 95.3 50.2 48.9 41.7 40.8 56.2 22.5 64.7 75.9 51.0PE-Core

ViT-G 2.3B 86B

✓ ✓
44.6 9.0 6.4 13.0 76.4 29.0 86.0 40.3 97.2 58.1 51.6 49.1 44.5 58.7 26.0 77.0 89.2 68.5

VL-JEPABASE ViT-L 1.6B 2.0B ✓ ✓ 46.4 16.1 13.3 21.1 57.8 39.8 74.4 60.5 88.0 58.4 37.6 55.4 49.2 47.9 23.1 78.2 88.8 87.2

VL-JEPASFT ViT-L 1.6B 2.5B ✗ ✓ 70.7 68.2 38.8 59.5 81.4 60.3 86.8 77.1 93.0 59.5 43.7 53.8 46.2 49.1 28.8 81.1 86.4 86.7
SoTA (including specialist models) ✗ ✗ - 77.5 56.4 47.8 92.1 67.3 95.3 64.5 96.0 - 62.8 74.1 74.2 61.4 28.9 77.0 89.2 68.5

4 Experiments
4.1 Classification and Retrieval
We begin by evaluating VL-JEPA’s classification and re-

trieval performance in §4.1, and benchmark VL-JEPA on

VQA datasets in §4.2. We demonstrate application of VL-

JEPA for understanding the relationship between world

state changes and action concepts (i.e., inverse dynamics) in

§4.3. In §4.4, we demonstrate the advantage of embedding

prediction by comparing it with a token-predictive VLM

baseline under a strictly controlled setting. In §4.5, we

evaluate the effectiveness of VL-JEPA’s selective decoding,

and show that it reduces decoding cost while maintaining

the performance. Next, we analyze VL-JEPA’s Y-Encoder

in §4.6.

Evaluation Setup. We evaluate VL-JEPA following the

CLIP-style evaluation protocol (see Fig.2 and §2 “Multi-

tasking”). We assess VL-JEPA on a broad suite of bench-

marks, including 8 classification datasets and 8 retrieval

datasets. For zero-shot evaluation, we compare against

generalist foundation models CLIP [Radford et al., 2021],

SigLIP2 [Tschannen et al., 2025], and Perception Encoder

(PE-Core)[Bolya et al., 2025]. We additionally report refer-

ence numbers from specialist models that are individually op-

timized for each benchmark (summarized in Appendix??).

Results. Table 1 summarizes the results. In the strict

zero-shot setting, VL-JEPABASE achieves higher average ac-

curacy (46.4 vs 44.6) across the 8 classification datasets and

higher average recall@1 (58.4 vs 58.1) across the 8 retrieval

datasets than the best baseline PE-Core-G. Per-dataset

scores show that VL-JEPABASE is particularly strong on

motion-centric benchmarks (SSv2, EK-100, EgoExo4D, and

step recognition on COIN and CrossTask), while relatively

weaker on appearance-centric benchmarks (Kinetics-400 and

task recognition on COIN and CrossTask). This is due to

VL-JEPABASE has seen substantially fewer vision-language

pairs (only 2B in comparison with PE-Core-G’s 86B). After

supervised finetuning, VL-JEPASFT improves significantly

upon VL-JEPABASE since the model has seen in-domain

training data. As a single generalist model, the performance

of VL-JEPASFT is approaching specialist models optimized

individually for each dataset.

4.2 Visual Question Answering
Evaluation Setup. We evaluate VL-JEPASFT on discrimi-

native VQA tasks. The inference process involves encode

candidate answers using the Y-Encoder and selecting the

answer that minimizes the distance to the predicted em-

bedding (see Fig. 2). We select four benchmarks that

prioritize visual perception rather than knowledge and

reasoning. We evaluate on GQA [Hudson and Manning,

2019], a dataset for real-world visual reasoning and com-

positional QA, reporting accuracy on the testdev-balanced

split. For TallyQA [Acharya et al., 2019], which targets

complex counting, we follow Chen et al. [2022] and report

the weighted average accuracy across the “simple” and

“complex” splits. Finally, to assess object hallucination,

we utilize POPE [Li et al., 2023b] and POPEv2 [Li et al.,

2025b]. For POPE, we report the average accuracy across

the “random”, “popular”, and “adversarial” settings on

MS-COCO.

Results. Table 4.2 compares VL-JEPASFT against estab-

lished VLM families, including BLIP-2 [Li et al., 2023a],

InstructBLIP [Dai et al., 2023], Qwen-VL [Bai et al., 2023],

InternVL [Chen et al., 2024d], Llava-1.5 [Vallaeys et al.,

2024], SmolVLM [Marafioti et al., 2025], PaLI [Chen et al.,

2022], PaliGemma [Beyer et al., 2024], and Video-LLaVA

[Lin et al., 2024]. VL-JEPASFT outperforms many of these
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Table 2. VQA benchmarks. We report accuracy on GQA [Hudson and Manning, 2019], TallyQA [Acharya et al., 2019], POPE [Li et al., 2023b], and

POPEv2 [Li et al., 2025b]. Scores lower than our model are marked in red. Scores from SmolVLM are obtained by our evaluation, while other baselines

are reported in the literature.

GQA: compositional visual reasoning TallyQA: complex object counting POPE: object hallucination POPEv2: object hallucination
Model Accuracy Model Accuracy Model Accuracy Model Accuracy

BLIP-2 (OPT-2.7B) 33.9 SmolVLM-256M 32.3 SmolVLM2-256M 56.4 SmolVLM-256M 62.3

BLIP-2 (FlanT5XXL) 41.0 SmolVLM-500M 44.8 SmolVLM-256M 57.9 LLaVA-1.5-13B 72.7

InstructBLIP (FlanT5XL) 48.4 PaLI-700M 62.3 LLaVA-7B 72.9 InternVL2-8B 74.5

InstructBLIP (Vicuna-13B) 49.5 SmolVLM-2B 64.7 InstructBLIP (Vicuna-13B) 79.0 InternVL2-26B 76.1

Qwen-VL-Chat-7B 57.5 PaLI-3B 65.8 Video-LLaVA (7B) 83.4 Qwen2-VL-72B 79.4

Qwen-VL-7B 59.3 InstructBLIP (Vicuna-13B) 68.0 SmolVLM-500M 85.8 SmolVLM-500M 83.8

InternVL-Chat (Vicuna-7B) 59.5 PaLI-17B 71.9 LLaVA-1.5-7B 85.9 Qwen2-VL-7B 87.0

LLaVA-1.5 (Vicuna-7B) 62.0 LLaVA-1.5 (Vicuna-13B) 72.3 LLaVA-1.5-13B-HD 86.3 SmolVLM-2B 88.8

InternVL-Chat (Vicuna-13B) 66.6 PaliGemma (3B) 76.8 SmolVLM-2B 87.5 Qwen2-VL-2B 91.3

VL-JEPASFT (1.6B) 60.8 VL-JEPASFT (1.6B) 67.4 VL-JEPASFT (1.6B) 84.2 VL-JEPASFT (1.6B) 82.2

Table 3. WorldPrediction-WM benchmark results. We compare the accuracy between large VLMs, socratic LLMs, and VL-JEPA. VL-JEPASFT

achieves a new SoTA at 65.7%.

Vision Language Models Socratic LLMs (w/ Qwen2.5-VL-72B captions) VL-JEPA

InternVL2.5 Qwen2.5-VL Llama-3.1 Llama-4 Qwen2.5 GPT-4o Claude-3.5 Gemini-2 BASE SFT

2B 4B 26B 38B 3B 7B 32B 72B 8B 70B 109B 400B 3B 7B 72B N/A N/A N/A 1.6B 1.6B

20.0 29.8 30.2 50.3 21.6 45.5 49.0 57.0 48.7 49.8 52.7 53.6 44.0 49.1 48.5 52.0 53.3 55.6 63.9 65.7

baselines despite requiring significantly less computational

resources–classical VLMs rely on extensively pretrained

CLIP backbones combined with multi-stage visual instruc-

tion tuning. In comparison, VL-JEPASFT employs a unified
architecture and a single embedding space to seamlessly han-

dle VQA, classification, and retrieval (Tab. 1).

4.3 WorldPrediction-WM
Evaluation Setup. We evaluate VL-JEPA on the “world

modeling” task in the WorldPrediction [Chen et al., 2025a]

benchmark, where the model is provided with two images

representing the initial and final world states and must

identify, among four candidate video clips, the action

that explains the observed transition. To adapt VL-JEPA,

we duplicate and concatenate the initial and final state

images to extract a state embedding, and encode each action

candidate into action embeddings. The model then selects

the candidate whose embedding is closest to the state

embedding.

Results. Table 3 shows accuracy comparisons. VL-

JEPABASE attains 63.9% and VL-JEPASFT attains 65.7% top-1

accuracy on WorldPrediction-WM, establishing a new

state of the art. Our VL-JEPA model not only substantially

surpasses existing VLMs of comparable or larger scale but

also exceeds the performance of frontier LLMs such as

GPT-4o, Claude-3.5-sonnet, and Gemini-2.0.

4.4 Embedding Prediction vs. Token
Prediction: A Controlled Comparison

Evaluation Setup. In this section, we compare VL-JEPA to

a token-generative VLM baseline under a strictly aligned

training conditions. Both models use the same Perception

Encoder [Bolya et al., 2025] (frozen ViT-L-14 with 336
2

resolution, no tiling, 16 frames per video) for vision inputs.

We use the same training iterations with the same effective

batch size of 128, same learning rate scheduler on the same

pretraining data mixture described above (§3). The only

difference is the prediction task: VL-JEPA predicts target

embeddings [Duquenne et al., 2023] using a 0.5B predictor,

whereas the VLM baseline performs next-token prediction

with cross-entropy using a 1B LLM. For VLM, we use the

standard training recipe and codebase of PerceptionLM

[Cho et al., 2025], aligning frozen vision encoder and text-

only LLM Llama-3.2-1B. For VL-JEPA, we initialize the

predictor from the 8-16 layers of Llama-3.2-1B.

We evaluate both models at regular checkpoints through-

out training spanning from 500K to 15M samples seen. At

each checkpoint, we measure the performance on video

captioning and video classification. For video captioning,

we report CIDEr scores averaged across YouCook2 [Zhou

et al., 2018], MSR-VTT [Xu et al., 2016] and PVD-Bench

[Bolya et al., 2025]. VL-JEPA decodes the predicted embed-

dings while VLM generates the tokens directly. For video

classification, we report top-5 accuracy averaged across

CrossTask-Step, CrossTask-Task [Zhukov et al., 2019] and

EgoExo4D [Grauman et al., 2024]. For VL-JEPA we choose

the candidate with lowest cosine distance to the predicted

embedding, while for VLM we pick the class with lowest

perplexity.

Results. As shown in Fig. 3, both models yield compa-

rable performance after 500K samples seen in both tasks,

with respectively 1.23 and 1.35 CIDEr in video captioning

and 14.9% and 14.0% top-5 accuracy for VL-JEPA and
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Figure 3. Comparison of embedding prediction (VL-JEPA) and token prediction (VLM). We conduct a fair comparison of under strictly aligned

training settings (encoder, data, batchsize, etc.). Left: Zero-shot video captioning CIDEr score averaged over 3 datasets and zero-shot classification

accuracy (top-5) averaged over 3 benchmarks. Right: Comparing the trainable parameters and average inference time cost.

Figure 4. Evaluation of selective decoding. Left: We compare uniform sampling of decoding points at fixed intervals (red) and embedding-guided

selective decoding (blue). Performance is measured by the average CIDEr score between each annotation 𝑦 and its closest decoded output 𝑦̂. Right:

Results on EgoExo4D show that selective decoding achieves a Pareto improvement over uniform sampling: for the same performance level, it requires

fewer decoding operations.

VLM. After a few iterations, we show that VL-JEPA’s per-

formance increase is much sharper compared to VLM,

reaching 14.7 CIDEr and 35.3% top-5 accuracy after 5M

samples seen. This gap remains constant as training scales

at 15M samples with 14.8 CIDEr and 41.0% top-5 accuracy

for VL-JEPA, while the VLM baseline yield respectively

7.1 CIDEr and 27.2% top-5 accuracy. This controlled com-

parison highlights the benefit of predicting embeddings

rather than tokens, showing both higher sample efficiency

and stronger absolute performance.

We compare the inference cost of the above VL-JEPA and

the VLM by pre-loading 64 video frames into memory and

repeatedly decoding text 100 times with the same prompt,

measuring the average time per sample. As shown in

Fig. 3 (right most), both models exhibit comparable latency

when generating text. What differentiates our model

from classical VLM is the decoupling between the prompt

processing (“Query Embedding”) and the video encoder

(“Encoder + Predictor”) from the text generation module

(“Decoder”). This allows us to only use the first part of

the model to perform retrieval and decode text only when

needed (see Section 4.5 below), making our model more

scalable for online video inference.

4.5 Effectiveness of Selective Decoding
Evaluation Setup. We evaluate the effectiveness of VL-

JEPA’s embedding-guided selective decoding on long-form

video streams. To this end, we design a benchmark task

where the goal is to recover a temporal sequence of an-

notations while minimizing the number of text decoding

operations, which dominate inference cost. As shown in

Fig. 4 (left), decoding is performed only at selected points

along the VL-JEPA embedding stream, yielding a sequence

of 𝑁 decoded outputs [(𝑡1 , 𝑦̂1), (𝑡2 , 𝑦̂2), . . . , (𝑡𝑁 , 𝑦̂𝑁 )]. Each

ground-truth annotation [(𝑡1 , 𝑦1), (𝑡2 , 𝑦2), . . . , (𝑡𝑇 , 𝑦𝑇)] is

then aligned to its nearest decoded output in time (illus-

trated as ◦ · · · ◦ in Fig. 4), and CIDEr is computed between

matched pairs. We use the EgoExo4D [Grauman et al.,

2024] validation set in procedural activity domains, which

consists of 218 videos with an average duration of 6 min-

utes and about 𝑇 = 143 atomic action annotations per

video.

As a baseline, we consider uniform sampling, where de-

coding points are placed at fixed intervals regardless of the

underlying video content. Standard streaming VLMs are

limited to this strategy, whereas VL-JEPA supports a more

effective alternative: adaptive selection of decoding points

guided by its predicted embeddings. We apply agglom-

erative clustering with temporal connectivity constraints

[Murtagh and Contreras, 2012] to partition the embedding

sequence into 𝑁 segments of high intra-segment monose-

manticity [Chen et al., 2024a], measured by variance (i.e.,
Ward distance). The intuition is that within a semantically

coherent segment, decoded outputs are highly similar, so

decoding once per segment captures the essential infor-

mation while greatly reducing overall decoding cost. The
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Table 4. Comparison of text-encoders performance. We report triplet-based accuracy (%) on SugarCrepe++ and VISLA datasets.

Model

# Params.

(total)

# Params.

(text encoder)

SugarCrepe++ [Dumpala et al., 2024a] VISLA [Dumpala et al., 2024b]

Average

Replace

Attribute

Replace

Object

Replace

Relation

Swap

Attribute

Swap

Object Average Generic Spatial

CLIP ViT-L 389M 85M 44.5 56.7 83.0 42.5 27.0 13.5 34.5 37.6 31.3

SigLIP2 ViT-g 1.9B 708M 56.5 66.9 74.4 52.1 58.4 30.6 40.4 48.7 32.1

PE-Core ViT-G 2.3B 537M 58.6 73.6 90.6 48.9 53.2 26.5 38.3 45.2 31.4

VL-JEPABASE ViT-L 1.6B 300M 63.9 72.2 90.1 52.2 62.9 42.0 42.9 49.8 35.9

VL-JEPASFT ViT-L 1.6B 300M 58.4 68.5 90.9 47.4 55.4 29.8 39.5 44.8 34.2

Table 5. Ablation studies results. The default setting adopted by VL-JEPA is marked in blue . We calculate ±delta within each group of ablations

in comparison with the default setting.

Classification

(Accuracy)

Retrieval

(Recall@1)

VQA

(Accuracy)

VL-JEPASFT 59.1 70.6 53.2

(a) Effectiveness of pretraining stage on caption data
w/ Pretraining 49.0 47.5 46.1

w/o Pretraining 27.3 (-21.7) 30.2 (-17.3) 42.5 (-3.6)

(b) Learning rate multiplier for Y-Encoder
multiplier = 0.05 27.3 30.2 42.5

multiplier = 1.00 23.7 (-3.6) 28.8 (-1.4) 40.7 (-1.8)

multiplier = 0.10 26.9 (-0.4) 30.2 (-0.0) 42.9 (+0.4)

multiplier = 0.01 25.6 (-1.7) 27.7 (-2.5) 41.0 (-1.5)

multiplier = 0.00 20.0 (-7.3) 25.9 (-4.3) 41.4 (-1.1)

(c) Loss function (with no projection head on top frozen text encoder)
InfoNCE 23.3 30.3 44.3

Cosine 16.5 (-6.8) 20.2 (-10.1) 46.6 (+2.3)

L1 14.8 (-8.5) 15.5 (-14.8) 41.9 (-2.4)

L2 13.5 (-9.8) 11.7 (-18.6) 43.7 (-0.6)

Classification

(Accuracy)

Retrieval

(Recall@1)

VQA

(Accuracy)

(d) Predictor architecture and initialization
Layer 8-16 27.3 30.2 42.5

Layer 0-2 24.3 (-3.0) 27.8 (-2.4) 40.1 (-2.4)

Layer 0-4 25.1 (-2.2) 28.9 (-1.3) 43.6 (+1.1)

Layer 0-8 27.2 (-0.1) 29.3 (-0.9) 43.4 (+0.9)

Layer 0-16 27.4 (+0.1) 31.0 (+0.8) 45.5 (+3.0)

w/o Bi-direction Attention 26.7 (-0.6) 31.2 (+1.0) 40.6 (-1.9)

w/o Llama-3 Initialization 28.1 (+0.8) 30.4 (+0.2) 40.6 (-1.9)

(e) Y-Encoder (trainable linear projection on top of frozen text encoder)
EmbeddingGemma-300M 19.5 24.1 42.5

Qwen3-Embedding-0.6B 24.5 (+5.0) 24.5 (+0.4) 41.5 (-1.0)

Qwen3-Embedding-4B 27.7 (+8.2) 26.6 (+2.5) 38.1 (-4.4)

Qwen3-Embedding-8B 29.6 (+10.1) 29.5 (+5.4) 41.9 (-0.6)

PEcore-B (356M) 29.4 (+9.9) 34.5 (+10.4) 35.9 (-6.6)

PEcore-L (356M) 29.0 (+9.5) 34.2 (+10.1) 42.9 (+0.4)

PEcore-G (539M) 33.9 (+14.4) 32.0 (+7.9) 41.8 (-0.7)

midpoint of each segment is then chosen as the decoding

point, and decoding is performed either from the exact

embedding or from the average-pooled embedding within

the segment.

Results. As shown in Fig. 4 (right), we sweep the av-

erage decoding frequency from 2.0 Hz down to 0.01 Hz

(i.e., average intervals between consecutive decoding op-

erations from 0.5s to 100s) by adjusting either the stride

of uniform sampling or the number of clusters in adap-

tive selection. Across the entire range, adaptive selection

consistently Pareto-dominates uniform sampling. In par-

ticular, selective decoding at 0.35 Hz (i.e., ∼2.85s interval)

matches the performance of uniform decoding at 1 Hz,

reducing decoding cost by ∼2.85×. We further observe

that average pooling provides consistent gains for both

strategies, since it provides denoising and stabilization on

embeddings prior feeding into the decoder.

4.6 Evaluation of Y-Encoder
Evaluation Setup. We evaluate whether the JEPA architec-

ture improves the Y-Encoder by following the uni-modal

text-only (TOT) evaluation setup. We use the hard-negative

benchmarks SugarCrepe++ [Dumpala et al., 2024a] and

VISLA [Dumpala et al., 2024b]. These datasets test sensitiv-

ity to semantic and lexical changes in image descriptions.

Each dataset contains triplets: two semantically similar de-

scriptions of the same image (𝑝1 and 𝑝2), and one negative

description (𝑛) created by altering attributes, relations, or

objects. We compare Y-Encoders from different models

by computing the cosine similarity for all description pairs.

We check that the similarity between positives 𝑠𝑖𝑚(𝑝1, 𝑝2)
is higher than both the similarity between each positive

and the negative 𝑠𝑖𝑚(𝑝1, 𝑛) and 𝑠𝑖𝑚(𝑝2, 𝑛). We report

accuracy (%) across all samples.

Results. Table 4 shows the performance of different

models on text hard-negative benchmarks. VL-JEPABASE

achieves a micro average accuracy of 63.9% on Sugar-

Crepe++ and 42.9% on VISLA. This is higher than the best

other models: PE-Core scores 58.6% on SugarCrepe++ and

SigLIP2 scores 40.4% on VISLA. The finetuned VL-JEPASFT

model also achieves competitive results, with 58.4% on

SugarCrepe++ and 39.5% on VISLA. These results indicate

that VL-JEPABASE has a Y-Encoder that is more resilient to

text hard-negatives.

4.7 Ablation Study
Evaluation Setup. We study different design choices for

VL-JEPA. Here we train all ablation models on the SFT stage
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data for 10K steps with a batch size of 512 (5M samples seen)

and constant learning rate. We report average classification

top-1 accuracy of 8 datasets (Tab. 1), average text-to-video

retrieval recall@1 of 8 datasets (Tab. 1), and average VQA

accuracy of 4 datasets (CLEVR, GQA, TallyQA simple and

complex). We report the results in Tab. 5.

Results. (a) Pretraining. Dropping the first query-free

pretraining stage on image and video captions significantly

hurt performance, especially on classification (-21.7) and

retrieval (-17.3). (b) LR Multiplier. The sweet point of

learning rate multiplier to the Y-Encoder is around 0.05

to 0.10. Either faster or slower learning degrades the

performance. (c) Loss Function. InfoNCE generally give

superior performance compared to cosine, L1, and L2

losses, with the only exception being cosine loss outper-

form InfoNCE on VQA. However, only InfoNCE has the

anti-collapse regularization and can be applied with un-

frozen Y-Encoder. (d) Predictor. In terms of predictor size,

more layers yield better performance, especially on VQA

performance. We also see that if using the original causal

attention instead of updating to bi-direction attention hurt

VQA performance (-1.9), since query tokens are appended

after visual tokens, and visual tokens are no longer able to

attend to query tokens. Finally, we also see that LLama-3

initialization is beneficial to VQA performance, although

vision-language alignment (classification and retrieval) is

a bit worse compared to randomly initialized Transformer

layers. (e) Y-Encoder. We tried different text encoder as the

Y-Encoder, and confirmed that VL-JEPA works well with

other embedding models than EmbeddingGemma-300M.

Generally, larger encoder leads to better performance, with

visually aligned text encoders (PE models) has significant

advantage in classification and retrieval.

5 Related Works
JEPA Models. JEPA model learns by predicting the rep-

resentation of a target input 𝑌 from the representation of

a context input 𝑋. Early instantiations include I-JEPA for

image encoding [Assran et al., 2023] and V-JEPA for video

encoding [Bardes et al., 2023], which demonstrated the

effectiveness of this objective over pixel reconstruction ap-

proach in their respective modality. Recent JEPA work falls

into two categories. One category of work emphasizes bet-

ter unimodal representation learning [Assran et al., 2023,

Bardes et al., 2023, Fei et al., 2023] or cross-modal align-

ment [Lei et al., 2025, Jose et al., 2025]. The other direction

targets world modeling, where pretrained encoders are

frozen and action-conditioned predictors are trained for

conditional prediction of state representations [Zhou et al.,

2025, Baldassarre et al., 2025, Assran et al., 2025]. This

has shown good results but remains limited to narrow

domains like mazes or robotic pick-and-place. Our pro-

posed VL-JEPA is the first designed for general-purpose

vision–language tasks. It performs conditional latent pre-

diction over vision and text, and preserves efficiency while

enabling flexible, multitask architecture.

Vision Language Models. Existing vision-language

models largely fall into two families: (1) CLIP-style models

with a non-predictive joint-embedding architecture (JEA)

[Radford et al., 2021, Zhai et al., 2023, Bolya et al., 2025,

Liu et al., 2024, Chen et al., 2023] encode images and

texts independently into a common latent space, 𝑋𝑉 ↦→𝑆𝑉
and 𝑌 ↦→ 𝑆𝑌 . By minimizing ℒCLIP = 𝐷(𝑆𝑉 , 𝑆𝑌) with

a contrastive loss (e.g., InfoNCE), CLIP learns aligned

representations that support zero-shot classification and

vision–language retrieval; (2) Generative VLMs [Liu et al.,

2023, Chen et al., 2022, Dai et al., 2023, Alayrac et al., 2022,

Chen et al., 2024b, Cho et al., 2025, Beyer et al., 2024]

connect a vision encoder [Radford et al., 2021, Fini et al.,

2025] with a language model (e.g., LLM). They are typically

trained with ℒVLM = 𝐷(𝑌̂, 𝑌), i.e., next token prediction

with cross-entropy loss, and can learn to handle various

vision-text-to-text generation tasks such as VQA.

Table 6. Task coverage comparison.

CLIP VLM VL-JEPA

Generation ✗ ✓ ✓
Retrieval ✓ ✗ ✓

Our proposed VL-JEPA integrates the architectural ad-

vantages and task coverage of both CLIPs and VLMs

(Table 6). Since VL-JEPA learns in embedding space, it

can leverage web-scale noisy image–text pairs [Jia et al.,

2021], yielding strong open-domain features. On the other

hand, VL-JEPA supports conditional generation tasks with

a readout text decoder. Meanwhile, compared to genera-

tive VLMs that optimize directly in data space, VL-JEPA is

more efficient at learning in the latent space. In addition,

it is also more efficient for online inference, as it allows

naturally selective decoding.

Efficient Vision Language Models. The growing size

and training cost of VLMs has motivated efforts to improve

efficiency. On the training side, strong performance can

be achieved by updating only a subset of parameters,

such as the vision–language connector [Tsimpoukelli et al.,

2021, Alayrac et al., 2022, Vallaeys et al., 2024, Shukor

et al., 2023, Koh et al., 2023, Merullo et al., 2022, Dai

et al., 2023]. At inference, efficiency is pursued through

pruning parameters or visual tokens [Cao et al., 2023,

Shukor and Cord, 2024, Vasu et al., 2025]. For real-time

use cases, recent work explores small VLMs [Yao et al.,

2024, Marafioti et al., 2025] and heuristics to reduce query

frequency in asynchronous inference [Shukor et al., 2025].

Latent-space Language Modeling. Current state-of-

the-art LLMs are trained to decode and reason in text space
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using autoregressive generation and chain-of-thought

prompting [Wei et al., 2022]. Text-space LLMs have rapidly

improved and now achieve strong results on a wide range

of benchmarks. However, the discrete nature of their rea-

soning trace may limit both speed and performance in

the long term. Several works have explored latent-space

LLMs that process or reason in latent space, such as Large

Concept Models [Barrault et al., 2024] and COCONUT

[Hao et al., 2024]. These models focus on unimodal latent-

space reasoning. With VL-JEPA, our goal is to align vision

and text representations in a shared multi-modal latent

space. This approach aims to enable better abstractions

and improve both the performance and speed of vision-

language models (VLMs). We hope VL-JEPA will serve as

a foundation for future work on multi-modal latent space

reasoning, including visual chain-of-thought methods [Li

et al., 2025a].

6 Conclusion
We have presented VL-JEPA, a new vision–language model

built upon the joint embedding predictive architecture.

By shifting supervision from discrete token space to con-

tinuous semantic embedding space, VL-JEPA simplifies

the learning target, avoids redundant modeling of sur-

face linguistic variability, and enables non-autoregressive

prediction. Through controlled experiments, we show

that VL-JEPA outperforms generative VLMs trained with

cross-entropy loss under matched training data budget,

while achieving superior training efficiency and signifi-

cantly lower inference latency. Beyond generation tasks,

the embedding-based design further allows VL-JEPA to

handle open-vocabulary classification and cross-modal

retrieval within a single unified architecture. Its ability

to emit continuous semantic embeddings also makes it

particularly well suited for real-time video applications,

where selective decoding can improve both responsive-

ness and efficiency. In this work, we demonstrated the

advantages of VL-JEPA over standard VLMs, particularly

in computational efficiency, streaming applications, and

video-language tasks. Our goal at this stage, is not to

propose a universal alternative to VLMs, as this would

require broader evaluation on tasks such as reasoning, tool

use, and agentic behaviors where current token generative

VLMs excel. Finally, although our results show clear bene-

fits from scaling parameters and dataset size, we did not

fully explore this direction, leaving it for future work.
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